Soutenance de thèse de Manon Beaufils-Marquet
30 janvier 2025 13 h
Lieu : Pavillon Gene-H.-Kruger, salle 2320-2330
Élaboration d’alternatives aux isolants giclés en construction en bois.
Le secteur de la construction représente 37 % des émissions de gaz à effet de serre et consomme 30 % de l’énergie produite dans le monde, majoritairement d’origine fossile. L’utilisation de cette énergie se partage entre la phase de construction et celle d’utilisation des bâtiments. L'isolation des bâtiments permet de réduire cette consommation en phase d’emploi en optimisant la gestion du chauffage. Cependant, les matériaux d'isolation traditionnels, comme la mousse polyuréthane giclée, reposent sur des ressources fossiles non renouvelables. Des isolants biosourcés, comme la ouate de cellulose ou la fibre de chanvre, sont des alternatives déjà envisagées, mais les propriétés de ces matériaux ne permettent pas de compenser les performances de la mousse polyuréthane en termes de conductivité thermique, perméance à l’air et à l’humidité notamment.
Ce projet de recherche explore la substitution des composés pétrosourcés par des bioressources dans la mousse polyuréthane giclée en s’intéressant aux filaments de cellulose (CFs) produits par l’entreprise Kruger inc. à partir de pâte Kraft blanchie de résineux du Nord, préservant la longueur des filaments produits. La cellulose, le biopolymère le plus abondant dans la nature, offre un potentiel intéressant en raison de ses propriétés mécaniques et thermiques et de sa disponibilité. De plus, elle comporte des fonctions hydroxyles qui la rendent modifiable chimiquement. L'objectif principal de ce projet est donc de développer un isolant giclé pour la construction en bois, en valorisant cette ressource, tout en réduisant l'utilisation de matériaux pétrosourcés et en maintenant les performances des isolants actuels.
Le potentiel des CFs en tant que charge dans une mousse polyuréthane a été évalué et les performances ont été comparées aux mousses de référence préparées au laboratoire sans composants biosourcés. Les formulations de mousse ont été ajustées en ajoutant des CFs à différents pourcentages, puis leurs propriétés (viscosité, morphologie, perméabilité à la vapeur d'eau, densité, conductivité thermique et résistance à la compression) ont été étudiées. Les CFs ont eu un impact significatif sur les propriétés de la mousse, notamment sur la taille des cellules et la sorption de vapeur. Les quantités de filaments étudiées (1 %m/m CF, 2.5 %m/m CF et 5 %m/m CF) dans la mousse ont permis de respecter les attentes de la norme associée aux mousses polyuréthanes pulvérisées de densité moyenne. Cependant, les résultats conduisent à des améliorations minimes des propriétés sans substitution des composants pétrochimiques. Lorsqu'utilisés en quantités excessives, ici supérieur ou égal à 5 %m/m, les CFs détériorent les propriétés du matériau, ce qui ne permet d'en intégrer qu'une faible proportion i.e., inférieure à 5 %m/m CF. L'utilisation de la cellulose comme simple charge a montré ses limites et est insuffisante pour réduire l'impact environnemental des mousses de polyuréthane. Il est donc nécessaire de se concentrer sur la substitution des produits à base de pétrole contenus dans les mousses.
La modification chimique des CFs pour substituer le polyol pétrosourcé a ensuite été étudiée. Deux méthodes d'éthérification ont été employées (à partir de glycérol dans un cas et de glycidol et éthylène carbonate dans un deuxième cas) pour modifier les CFs, produisant des fonctions réactives et accessibles à partir des groupes hydroxyles pour réagir avec l’isocyanate présent. Les polyols résultants et les mousses de polyuréthane ont été caractérisés. Les mêmes propriétés qu’en première partie ont été étudiées. Les résultats ont montré une réactivité réduite des polyols biosourcés, impactant la taille et l'ouverture des cellules, et entraînant une détérioration des propriétés mécaniques conduisant à une non-conformité aux normes canadiennes sur les mousses polyuréthane. Malgré cela, des résultats prometteurs de conductivité thermique ont été obtenus en restant compétitif face à la conductivité thermique d’isolants conventionnels (laine de roche ou fibre de bois).
Enfin, cette étude a permis d’évaluer la modification des CFs comme solution ignifuge durable pour améliorer les performances environnementales de la mousse de polyuréthane et réduire sa toxicité en cas d'incendie. En effet, le retardateur commercial et pétrosourcé actuellement utilisé, le phosphate de tris(1-chloro-2-propyle) (TCPP) qui est un composé chloré, émet des fumées toxiques pour l'homme lors d'incendies. Les CFs ont été traités avec des composés à base d'azote et de phosphore pour obtenir des complexes polyélectrolytes (PEC) et des produits couche-par-couche (LbL). La morphologie, les propriétés thermogravimétriques, le comportement au feu et la sorption de la vapeur d'eau ont été caractérisés. Bien que les niveaux d'imprégnation en phosphore soient faibles comparé à la littérature, les CFs modifiées ont montré des propriétés prometteuses, comparables au retardateur de flamme commercial à quantité de phosphore équivalent, tout en produisant moins de fumée.
Informations supplémentaires :
Membres du jury
Présidente | Marie-Hélène Vandersmissen | Faculté de foresterie, de géographie et de géomatique, Université Laval |
Directrice de recherche | Véronic Landry | Faculté de foresterie, de géographie et de géomatique, Université Laval |
Codirecteur de recherche | Pierre Blanchet | Faculté de foresterie, de géographie et de géomatique, Université Laval |
Examinatrice non UL | Flavia Braghiroli | Université du Québec en Abitibi-Temiscamingue |
Examinateur UL | Denis Rodrigue | Faculté des sciences et de génie, Université Laval |
Examinatrice externe | Wendy Rodriguez Castellanos | Innofibre |